Structure Reports

Online
ISSN 1600-5368

Sankar Muniappan and Israel Goldberg*

School of Chemistry, Sackler Faculty of Exact Sciences, Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv, Israel

Correspondence e-mail: goldberg@post.tau.ac.il

Key indicators

Single-crystal X-ray study
$T=110 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.043$
$w R$ factor $=0.128$
Data-to-parameter ratio $=16.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
On C—H $\cdots \mathrm{O}$ interactions in 3,5-dinitrobenzaldehyde

The structure of the title compound, $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{5}$, was determined from low-temperature data (at about 110 K). It reveals a stacked-layered organization of the molecules with $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions within the layers.

Comment

The title compound, (I), is an important reagent in the synthesis (by its condensation with pyrrole) of tetrakis(3,5dinitrophenyl)porphyrin. The latter is a precursor in the preparation of the corresponding porphyrin octacarboxylic acid, an attractive building block for the supramolecular selfassembly of large porphyrin-based arrays (Goldberg, 2005, and references therein). As (I) has not been characterized before by X-ray structure analysis, we report here its structure determined at ca 110 K with a resolution of $0.70 \AA$. The goodquality data allowed refinement of the H -atom parameters, and provide a reliable description of the intermolecular C $\mathrm{H} \cdots \mathrm{O}$ contacts. The molecular structure of (I) (Fig. 1) reveals a planar benzaldehyde fragment with small deviations of the nitro groups from the aromatic plane; the dihedral angle between $\mathrm{C} 1 / \mathrm{C} 6$ and $\mathrm{N} 9 / \mathrm{O} 11$ is $16.13(6)^{\circ}$, whereas that between $\mathrm{C} 1 / \mathrm{C} 6$ and $\mathrm{N} 12 / \mathrm{O} 14$ is $3.51(5)^{\circ}$. In (I), the planar molecular fragments are arranged in layers connected by C H. . O interactions (Fig. 2 and Table 1; CSD, Version 5.27, August 2006 update; Allen, 2002; Desiraju \& Steiner, 1999). Each molecule is involved in eight intra-layer interactions (graph-set representation $R_{2}^{2}(8)$; Bernstein, et al., 1995) with neighbouring molecules. The corrugated arrays are aligned roughly perpendicular to the b axis (Fig. 3).

(I)

Experimental

3,5-Dinitrobenzyl alcohol (Aldrich) was oxidized to 3,5 -dinitrobenzaldehye using quinolinium chlorochromate by the method of Bhyrappa et al. (1998). 3,5-Dinitrobenzaldehyde ($10 \mathrm{mg}, 0.05 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ and allowed to stand for slow evaporation. X-ray quality crystals were obtained after 5 d .

Received 15 November 2006
Accepted 22 November 2006

Figure 1
The molecular structure of (I), showing the atom-labelling scheme. Ellipsoids represent displacement parameters at the 50% probability level at ca 110 K .

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{5}$
$M_{r}=196.12$
Monoclinic, $P 2_{\mathrm{b}} / n$
$a=8.2791(2) \AA$
$b=6.20910(10) \AA$
$c=14.9903(4) \AA$
$\beta=93.5895(11)^{\circ}$
$V=769.08(3) \AA^{\circ}$

$$
Z=4
$$

$$
D_{x}=1.694 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation $\mu=0.15 \mathrm{~mm}^{-1}$
$\mu=0.15 \mathrm{~mm}$
$T=110(2) \mathrm{K}$
Prism, colourless
$0.35 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer φ and ω scans

2321 independent reflections
1793 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=30.5^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.127$
$S=1.06$
2321 reflections
143 parameters

All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0766 P)^{2}+\right.$
$0.0648 P$] where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.028$
$\Delta \rho_{\max }=0.30 \mathrm{e}^{\text {A. }}{ }^{-3}$
$\Delta \rho_{\min }=-0.34 \mathrm{e}^{-3}$

Table 1
Geometry of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions in (I) $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 13^{\text {i }}$	0.958 (19)	2.573 (19)	3.5027 (14)	163.7 (15)
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 8^{\text {ii }}$	0.987 (15)	2.381 (15)	3.3382 (14)	163.1 (12)
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 10^{\text {iii }}$	0.967 (17)	2.523 (17)	3.1338 (14)	121.1 (12)
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 14^{\text {i }}$	0.967 (17)	2.621 (17)	3.5340 (15)	157.7 (12)

Symmetry codes: (i) $x-1, y, z$; (ii) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.

Initially, the four H atoms were placed in calculated positions and were constrained to ride on their parent atoms. In the final stages of the least-squares refinement, the coordinates and the displacement parameters of all the H atoms were refined freely without any restraints or constraints.

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski \& Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SIR97 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and

Figure 2
Illustration of the weak intermolecular hydrogen bonds within the layers. As a result of the slightly different alignment of adjacent units, these arrays have corrugated surfaces. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are indicated by red dotted lines (Table 1). [Symmetry codes: (i) $x-1, y, z$; (ii) $\frac{1}{2}+x$, $\frac{1}{2}-y, \frac{1}{2}+z$; (iii) $-\frac{1}{2}+x, \frac{1}{2}-y,-\frac{1}{2}+z$.]

Figure 3
The crystal packing of (I); two pairs of molecules of two adjacent layers are shown. Relatively short contacts observed between molecules in different layers are indicated by dotted red lines. They correspond to the following distances and their symmetry and translation equivalents: (I) $\mathrm{H} 2 \cdots \mathrm{O} 10\left(-\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z\right) 2.648$ (2) \AA; (II) $\mathrm{O} 11 \cdots \mathrm{C} 2\left(-\frac{1}{2}-x,-\frac{1}{2}+y\right.$, $\left.\frac{1}{2}-z\right) 3.110$ (2) \AA; (III) C6 $\cdots \mathrm{O}(-x,-y,-z) 3.172$ (2) \AA.

Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

This research was supported in part by the Israel Science Foundation (grant No. 254/04).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bhyrappa, P. \& Suslick, K. S. (1998). J. Porphyrins Phthalocyanines, 2, 391396.

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.

organic papers

Goldberg, I. (2005). Chem. Commun. pp. 1243-1254.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

